Bronkhorst

Messung und Regelung von NO2 – nicht trivial, aber möglich

25. September 2018 Dr. Christian Monse (IPA)
NO2 Kontrolle

Die Immission von Stickoxiden (NOx) wie z.B. NO2 ist ein globales Problem. Überall auf der Welt arbeiten Forscher und Entwickler sowohl an besseren und genaueren Simulations- und Messmethoden als auch an effizienteren Katalysatoren. Stickoxide entstehen bei nahezu allen Verbrennungsprozessen, sowohl bei stationären (z.B. in Kraftwerken, bei der Stahl-Produktion oder in der chemische Grundstoff-Produktion) und genauso bei der mobilen Verbrennung z.B. in Auto- oder Schiffsmotoren.

Das sogenannte NOx ist ein Gemisch verschiedener Stickoxide z.B. NO, NO2, N2O4, N2O3, N2O5). Der Fokus liegt hier auf NO2-Radikalen (Stickstoffdioxid-Radikalen) und seinem Dimer N2O4 (Distickstofftetraoxid). NO2 ist giftig und die Immission in die Umwelt sollte möglichst gering gehalten werden. Allerdings tritt NO2 bei einer Vielzahl von Verbrennungsprozessen als Nebenprodukt auf, so dass sich sowohl die technischen Entwickler als auch die Arbeits- und Präventionsmedizin mit dieser Substanz beschäftigen müssen. Um den Eintrag von NO2 in die Atmosphäre zu reduzieren, wird in der Abgas-Aufbereitung hinter einem Verbrennungsprozess kontrolliert Ammoniak (NH3) bzw. eine ammoniakbildende Substanz wie Harnstoff zugesetzt. In einer katalytischen Reaktion (SCR-Katalyse, selektive katalytische Reduktion) wird das giftige NO2 in Stickstoff und Wasser (und ggf. CO2) umgewandelt.

Allerdings liegt in der oben beschriebenen Gleichgewichtslage auch das Problem bei der Messung und Regelung von Gasströmen, die NO2 in höherer Konzentration enthalten und insbesondere bei der Verwendung von reinem NO2. NO2 liegt im Gleichgewicht mit seiner dimeren Form N2O4. Dieses Gleichgewicht ist sowohl temperatur- als auch druckabhängig und wird zusätzlich durch Licht und Oberflächenbeschaffenheit beeinflusst (bei 27°C liegen nur 20% als NO2 vor, die restlichen 80% als Dimer). Das Gemisch ist zudem sehr feuchtigkeitsempfindlich und kann u. a. mit Luftfeuchtigkeit zu Salpetersäure (HNO3) und Sapetriger Säure (HNO2) reagieren, die ihrerseits hochkorrosiv sind.

Gasgemische mit Stickstoffdioxid (NO2)

Für Untersuchungen von Verbrennungsprozessen mit NO2-Emission, die Überprüfung bzw. Neuentwicklung von Katalysatoren oder auch zur Evaluierung von NO2-Analysatoren muss ein genau bekannter Durchfluss von Gasgemischen mit NO2 realisiert werden. Dies gilt aber nicht nur im Katalysebereich sondern auch, wenn es um die Wirkung von NO2 auf den Organismus und die Umwelt geht, denn NO2 ist auf Grund seiner Reaktivität hoch giftig.

Bei uns am Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität-Bochum (IPA), beschäftigen wir uns mit aktuellen Themen zur Arbeitsmedizin, aber auch Toxikologie und Epidemologie. Eines unserer aktuellen Projekte ist die Entwicklung eines Referenzsystems für Ringversuche mit NO2-Analysegeräten.

In einem unserer Projekte sollte eine Anlage bestehend aus einer Gasflasche, Nadelventil, Rückspüleinheit, Transferleitungen und Massenflussregler konstruiert werden, die Stickstoffdioxid (NO2) im Bereich bis 6 g/h gegen Raumdruck dosieren kann.
 

​Die Herausforderung: NO2 korrekt messen und regeln

Gängige Massendurchflussmesser und Massendurchflussregler arbeiten mit thermischen Messprinzipien. Thermische Sensoren arbeiten auf dem Prinzip des Wärmetransportes im Sensorelement (CTA - Constant Temperature Anemometry). Diese Methode ist gasartabhängig, da der Wärmetransport unmittelbar mit der Wärmekapazität und der Wärmeleitfähigkeit des zu dosierenden Gases abhängt. Da beim Stickstoffdioxid ein temperatur- und druckabhängiges Gleichgewicht zum Distickstoffteraoxid besteht, können sich die Parameter im Sensorelement ständig ändern. Eine Berücksichtigung des Gleichgewichts unter Zuhilfenahme eines einzigen Konversionsfaktors zu einem Referenzgas reicht insbesondere bei NO2/N2O4-Mischungen nicht aus. Durch gravimetrische Versuche haben wir festgestellt, dass bei einer Dosierung mit thermischen Massendurchflussreglern von reinem NO2 massive Unterdosierungen auftreten können (ca. 10 % vom Sollwert).

Eine weitere Herausforderung besteht darin, dass ein thermischer Massenflussregler im geschlossenen Zustand, entsprechend einer Flussrate von 0 ml/min., Pseudosignale produzieren kann, die bis zu 10 % des maximalen Dosierbereichs betragen. Der Grund hierfür liegt darin, dass sich am Sensorelement eine Mischung aus NO2 und N2O4 befindet, die durch die aktive Beheizung des Sensorelements ständig beeinflusst wird. Somit wird ein Wärmetransport im Gerät vorgetäuscht und es wird ein Durchfluss angezeigt.

Die Lösung: Verwendung eines Coriolis-Massenflussreglers

Abhilfe schafft ein Coriolis-Massenflussregler, der aufgrund seines vom thermischen Massenflussregler abweichenden Sensorprinzips gasartunabhängig arbeitet. Es spielt hierbei keine Rolle, wie stark das Gleichgewicht von NO2 und N2O4 auf der einen oder anderen Seite liegt, da das Coriolis-Prinzip eine reine Massenmessung ist. Beim Gebrauch eines Coriolis-Massenflussreglers ist aber darauf zu achten, dass sich das zu dosierende Medium in einem definierten Aggregatzustand befindet, d.h. entweder im komplett flüssigen oder gasförmigen Zustand.

Der Siedepunkt von NO2 liegt unter atmosphärischen Bedingungen bei 21 °C, also bietet es sich hier an, das komplette Dosiersystem, bestehend aus Gasflasche, Nadelventil, Rückspüleinheit, Transferleitungen und Massenflussregler zu beheizen. Da beim Dosieren von NO2 am Ort der Druckentlastung im Inneren des Massenflussreglers Verdunstungskälte auftritt, muss die Temperatur dort deutlich höher als 21 °C eingestellt werden. Erst bei einer Temperatur von mindestens 45 °C ist sichergestellt, dass die Dosierung im Bereich zwischen 0 und 6 g/h ohne Fluktuationen durch auskondensierendes und wieder verdampfendes NO2 funktioniert. In diesem Aufbau heben wir einen mini CORI-FLOW ML120V21 von Bronkhorst verwendet, das ist der Coriolis-Massendurchflussregler mit dem kleinsten Regelbereich weltweit. Hiermit ist es möglich, selbst kleinste Mengen NO2 genau zu dosieren.

mini CORI-FLOW™ ML120 Coriolis Massendurchflussregler
mini CORI-FLOW™ ML120 Coriolis Massendurchflussregler
No2 Dosierung per Coriolis-Massenflussregler

​Überprüfung der NO2-Dosierung:

Die Überprüfung der dosierten NO2-Menge wurde mit Hilfe von gravimetrischen Messungen vorgenommen. Dazu wurde NO2 über eine beheizte Transferlinie zu einem U-Rohr aus Glas mit Absperrhähnen geleitet und dort bei -50 °C ausgefroren. Anschließend wurden die Absperrhähne verschlossen, das Kondensat auf Raumtemperatur aufgetaut und gewogen. Insgesamt wurden fünf verschiedene Massenflüsse getestet. Die Abbildung zeigt das Ergebnis der Überprüfung und bestätigt die sehr geringen Abweichungen zwischen gewünschten und tatsächlichen Dosiermengen. Zusätzlich ist ersichtlich, dass der Massenflussregler im getesteten Bereich zwischen 0,1 und 4,0 g/h linear arbeitet (Einzelpunkte: 0,1; 1,0; 2,5 und 4,0 g/h mit eingezeichneten Fehlerbalken).

Damit ist bewiesen, dass eine genaue Regelung für geringe Mengen NO2 selbst bei niedrigen Vordrücken realisiert werden kann. Das System bietet Forschern und Entwicklern die Möglichkeit, eine hochgenaue NO2-Dosierung zu realisieren und so Ihre Arbeit effizienter zu gestalten.

Erfahren Sie mehr über den Coriolis-Massendurchflussregler ML120!

Reduktion von Stickstoffoxiden

BRONKHORST (SCHWEIZ) AG

Gewerbestrasse 7
4147 Aesch BL (CH)
Tel. +41 61 715 90 70
[email protected]

     
Copyright © 2021 Bronkhorst. Alle Rechte vorbehalten.     Sitemap     Haftungsausschluss     Datenschutz     Impressum