Technology trends in Mass flow Devices, comparing Thermal By-Pass and Differential Pressure devices

September 27, 2016 James Walton
El-FLOW Select mass flow meter in action

The selection of a mass flow meter or controller depends fully on the application and customer requirements. There is isn’t a good or bad decision as long as you are aware of the specific characteristics of the different options for your application.

As a vendor of a broad portfolio of sensor technologies, we compare the pros and cons of each technology per customer case. Occasionally we discuss with our customers how we can define the main differences between a thermal by-pass and a differential pressure flow device. We sometimes come across these differential pressure devices in the field across a small set of applications due to their inherent limitations, however, when we do get asked the question it is always good to have a good understanding of the technology in question.

Artistic impression El-FLOW Select mass flow meter

Range and options

Thermal by-pass flow devices cover a much wider range of application conditions, for example we can cover from Vacuum to 700 bar when a differential pressure device typically operates between atmospheric and 10 bar.

Physical Behaviour

Where most end users are interested is usability. This is because it dictates how the instrument will directly affect their process to hopefully achieve the desired goal, either to increase or decrease something. Talking about usability is not always in terms of functionality, options, on-board screens or other extras, it is how the instrument is physically designed to handle the behaviour of gas flow as it passes through the instrument to derive a useful reading.

The internal structure of a thermal by-pass flow meter is based around creating a predictable and repeatable split in the flow between the laminar flow element (LFE) and the by-pass sensor. The better the laminar flow element works, the more predictable the flow of gas is and the more accurate the split of the flow and therefore the performance of the flowmeter. With the split of a thermal by-pass instrument being based on mechanical dimensions the absolute temperature and pressure virtually do not influence the split. With pressure based instruments the viscosity in the LFE is directly influencing the reading, viscosity strongly depends on temperature and pressure, and this may lead to the instrument being susceptible to subtle variations in the flow.


Overall accuracy in a thermal by-pass instrument is dependent on just one sensor (measuring direct thermal mass flow), on the other end of the scale pressure based instruments need to calculate mass flow from the measured volume flow, temperature and pressure. This could mean using up to 4 sensors. When measuring with this many sensors the individual errors will add up. Pressure based instruments have to measure temperature at two positions; one in the pressure sensor to compensate for temperature errors in the pressure sensor and one in the LFE to correct the pressure drop at actual gas temperature.


Thermal by-pass instruments cover a much larger range of flows and pressures; they are also less complex requiring fewer sensors to generate the same data. It is also easier to define the working parameters of the thermal by-pass instruments, fewer sensors means fewer combined limitations and inaccuracies. The internal design and basic principle of the differential pressure devices appears to require a more complex system of measuring to get to the same end point. As always we are happy to discuss and talk about the differences between all of the flow meters available, in the coming weeks we will be looking closely at other flow meter technology including; Coriolis, CTA (Constant Temperature Anemometry) and MEMS.

Read more about these technologies in the related blog posts:

  • Watch our video about the principle of operation of the thermal mass flow meter/controller with by-pass sensor.

Bronkhorst USA LLC

57 South Commerce Way
Suite 120
USA - Bethlehem, PA 18017 
Tel.  +1-610-866-6750

        Social Responsibility
Copyright © 2021 Bronkhorst. All rights reserved.     Sitemap     Disclaimer     Privacy note