Bronkhorst

Mass flow measurement in Ammonia Control to Avoid Fines

August 28, 2018 Chris King
Exhaust Gases

Anhydrous Ammonia Control for Nitrogen Oxides Reduction

As a technique to reduce the level of Nitrogen Oxides (NOx) in boiler or furnace exhaust gases, Selective Catalytic Reduction (SCR) has been around for years. SCR is a technology which converts Nitrogen Oxides (NOx) with the aid of a catalyst into diatomic Nitrogen (N2) and Water (H2O). A reductant agent is injected into the exhaust stream through a special catalyst. A typical reductant used here is Anhydrous Ammonia (NH3). 

A customer of Bronkhorst, who has been selling and servicing boilers and pumps for commercial and industrial applications for over 50 years, had been using a mass flow controller (MFC) which was not reliable and robust enough for the application and thus their customers were suffering from poor ammonia measurement and control.

Selective Catalytic Reduction example
Selective catalytic reduction example

Why use mass flow measurement in Ammonia Control?

Some NOx reduction systems are liquid ammonia based, and others are gas based ammonia.  Whatever the state of the ammonia in the NOx reduction system Bronkhorst can offer accurate ammonia measurement and control.  Systems in the field today are using the MASS-STREAM (gas), IN-FLOW (gas) and Mini CORI-FLOW (liquid) to accurately control the ammonia being injected into the exhaust gas stream so that proper reaction takes place without ammonia slip.  Ammonia slip is when too much ammonia is added to the process and it is exhausted, un-reacted, from the system; effectively sending money out the exhaust stack.

There are very strict federal and state air quality regulations that specify the allowable level of NOx which can be released into the atmosphere and there can be very heavy fines if those levels are exceeded. The company needs to provide their customers with a reliable and robust solution. The application demands a robust and repeatable mass flow controller that is at home in industrial environments.

What kind of Mass Flow Meter or Controller can be used here?

In the NOx reduction system serviced by our customer the mass flow controllers are used to control the flow of anhydrous ammonia (ammonia in gas state) into the exhaust gas of a boiler or furnace where it is adsorbed onto a catalyst. The exhaust gas reacts with the catalyst and ammonia which converts the Nitrogen Oxides into Nitrogen and Water.

Bronkhorst recommended a mass flow controller – from the MASS-STREAM series - using the CTA (Constant Temperature Anemometer) technology which is ideal to avoid clogging in potentially polluted industrial gas applications.

Let me explain a bit about the working principle of this kind of mass flow controller and why it is suitable for an application like this.

mass stream mass flow meter
MASS-STREAM™ Mass flow meter

The CTA (Constant Temperature Anemometer) principle is essentially a straight tube with only two stainless steel probes (a heater and a temperature sensor) in the gas flow path.  A constant temperature difference between the two probes is maintained with the power required to do so being proportional to the mass flow of the gas. This means the MASS-STREAM is less sensitive to dirt, humidity, or other contaminants in the gas, as compared to a by-pass type flow meter that relies on a perfect flow split between two paths. The thru-flow nature of the CTA technology is ideal to avoid clogging in potentially polluted industrial gas applications.  The straight flow path and highly repeatable measurement and control capability, combined with the robust IP65 housing, allows the MASS-STREAM to thrive in tough applications.

  • Check out the top 5 reasons why to use mass flow controllers with CTA measurement.

Read more about CTA measurement



Watch our video animation, explaining the functions and features of the Bronkhorst Mass Flow Meters and Controllers for gases using the CTA principle.


Bronkhorst High-Tech B.V.

Nijverheidsstraat 1A
NL-7261 AK Ruurlo (NL)
Tel. +31 573 45 88 00
[email protected]

Copyright © 2018 Bronkhorst. All rights reserved.     Sitemap     Disclaimer     Privacy note