Bronkhorst

What would whipped cream be without air?

May 1, 2018 Hans-Georg Frenzel, Technical Director at Hansa Industriemixer

We all love cake, there’s no denying that, and especially with whipped cream. A celebration isn’t a celebration without a cake, whether you’re throwing a birthday party or attending a wedding. Or just when you’re having coffee with friends or family, simply because it’s delicious. Baking and decorating a cake takes a lot of time and patience. And that’s exactly why most choose the easy way of picking out an already finished piece , either from their local pastry chef or out of the freezer section at the supermarket. And today I would like to tell you something about how such a fancy cake is made.

Cake

Manufacturing the cake layers

It all starts with the base, which consists of one or more layers of cake that provide support to the whipped cream. These layers are factory produced, but they aren’t made in individual round spring forms. The dough is applied on a closed metal conveyor belt by using nozzles. This belt goes through an oven and at the end the individual shapes with the desired diameter are cut out of the dough.

Controlling air by using mass flow controllers

To make sure that these  cake layers all have the same weight and consistency, foam technology is used in addition to the baking agent in the dough. In this case, a foam mixer generates a dispersion of dough and air which is then applied onto the baking steel belt. In this process, it is highly important that this dough always has the same consistency, density and quality. Thus it is not only necessary to control the delivery rate of the dough, but just as important is the amount of air. By using the Bronkhorst EL-FLOW Select mass flow controllers, precise control of the required air volume is ensured at all times throughout the whole process.

EL-FLOW Select mass flow controller
Picture 1: EL-FLOW Select thermal mass flow controller for control of the air volume

Whipped cream

In cake decoration, the  cake layers are covered with whipped cream and other sweet fillings. To produce whipped cream out of liquid cream, another foam mixer is used in combination with Bronkhorst mass flow controllers, proving their worth yet again by achieving continuous high accuracy and precise control. The whipped cream production is similar to dough production; however the requirements for this system are different.


Hygiene requirements: Cleaning in Place - CIP

In food production, high hygiene requirements apply. In the dough production process, the mixer is cleaned of residues by CIP (Cleaning In Place) using cleaning additives, guaranteeing a hygienic product. However, in whipped cream production, it’s highly important that all product-contacting surfaces in the foam mixer are clean and absolutely germ-free, since it’s a sweet dairy product and the cake needs to be preserved for a long period of time. This asks for even higher hygiene requirements, so these machines need a different cleaning approach. Using only CIP with cleaning additives can’t guarantee this, so they have to be sterilized in place (SIP) as well. Using a saturated steam at a temperature of 130° Celsius, the product area of the machine is thoroughly cleaned. This maintenance takes around 300 seconds to make sure all germs are killed. This gives the cake a longer shelf life when stored in the refrigerator or freezer.
 

A Hansa Mixer installation
Picture 2: A Hansa Mixer installation

Hansa Mixer

Hansa Industrie-Mixer is a worldwide, medium-sized company that operates in the field of mixing machines and foam generators for the food and non-food industry. Technical equipment before and after the foam mixer is also included in the scope of delivery to the customers. These are not mass-produced products, but every system is customized and tailored to the needs of the customer. If you want to differentiate yourself from the competition, you need a custom-made machine and system. The heart of the foam mixer is a mixing head that uses the rotor/stator principle. Rotor and stator are fitted with rings of pins which are able to pass the pins on the opposite side when the rotor rotates in the stator. The generated turbulence and shear forces produce a fine dispersion from a pumpable medium and a foam gas, which in this case creates the used foam.