How Mass Flow Controllers make our gas smell

May 16, 2017 Sandra Wassink
How Mass Flow Controllers make our gas smell

Did you know that natural gas is odorless? I didn’t… I always find it having a penetrating sulfur scent. Well, it appears that this penetrating scent is added to the natural gas on purpose. Let’s see why this is.

As natural gas is combustible and odorless by nature, the government requires some safety measures here. Many countries have established safety regulations how to handle natural gas and which gas needs odorisation. This is mostly done by the Health and Safety department (HSE) of the local government.

Today’s question is about this subject. Why does gas smell when it is odorless by nature? This is the point where gas odorisation comes in.

Picture LEL and UEL
LEL (Lower Explosive Limit) and UEL (Upper Explosive Limit)

What about natural gas odorisation?

Odorisation of natural gas is done to act as a ‘warning agent’ in case of leakage. The idea is that people can smell the gas prematurely if it is present. Because, if there is too much gas present it can be explosive.

As shown in the picture, the LEL (Lower Explosive Limit) and UEL (Upper Explosive Limit) are crucial here. If the concentration of the combustible substance present in the air is too low (< LEL), than no combustion will occur. It the mixture is too rich (> UEL), there is a huge amount of gas in the air and only partial combustion will occur. Gases become dangerous in between the LEL and UEL. Therefore, it is most important for people in the surroundings to smell the gas in time, before the concentration is too high and it exceeds the LEL.

As a result, it is stated in the safety regulations that natural gas has to be detectable at a concentration level of 20% of the LEL and this is done by odorisation. Needless to say that the odor used in the gas is not dangerous to people’s health.

When is an odor added to gas?

This depends on the type of gas line. We know ‘distribution lines’ and ‘transmission lines’.
Distribution lines are local natural gas utility systems that include gas mains and service lines, such as the commercial gas used at domestic environments. All these distribution lines need to be odorised. For the transmission lines it is stated in the regulations when to odorise it.

THT, Tetrahydrothiophene

For the odorisation there are many different odorants available, such as Tetrahydrothiophene (THT) and Mercaptan. Selecting the odorant depends on the properties of the gas to be odorised, pipeline layout, ambient conditions etc. Tetrahydrothiophene or THT is a well-known odor. THT is under ambient conditions a colourless volatile liquid with an unpleasant smell.

ATEX Zone 1 Coriolis Mass Flow Meter
ATEX Zone 1 Coriolis mass flow meter

Controlled supply of THT using mass flow controllers

Bronkhorst had the pleasure of developing a solution for a Dutch customer to add THT to their biogas. Biogas was generated from anaerobic decomposition of organic matter and upgraded to natural gas quality to inject into the Dutch natural gas main. As commercial natural gas in the Netherlands has to contain at least 18mg of THT per cubic meter gas, the process of adding this to the commercial gas had to be done really accurately.

The traditional approach to add THT is using a pump with a fixed stroke volume. However, low gas flow rates using a pump for batch-wise injection may lead to liquid THT remaining in the gas lines. THT may not be mixed well with the gas and might have the wrong concentration. A homogeneous injection of THT is therefore much better. Besides this, THT is a relatively expensive odor which also makes an accurate injection very much desired.

A better solution here would be using a combination of a pump with a Coriolis mass flow controller, in our case the mini CORI-FLOW™ series mass flow controllers. The Coriolis instruments make it possible to dose both continuously as well as accurately.

Read more about this application in our application note 'Controlled supply of odorant to natural gas'.

Hazardous areas

Something to be taken into account is the classification of the area. As gases in principle are explosive, it is very common for the environment around gases to be classified as a hazardous area. Most common classifications (in Europe) are marked as ATEX zone 1 or zone 2. Just make sure to select the right material to use.

For solutions such as THT odorisation processes, Bronkhorst can offer both ATEX/IECEx zone 1 and zone 2 solutions. Our mini CORI-FLOW Exd mass flow meter, for zone 1 applications, is a collaboration with one of world’s leading manufacturers in explosion protection, Electromach member of the R.STAHL Technology Group.

  • In this video Bronkhorst presents the principle of a Coriolis mass flow meter from the mini CORI-FLOW series. The video also explains how the flow can be adjusted quickly and precisely through the combined use of a Coriolis mass flow meter and a gear pump.

Bronkhorst High-Tech B.V.

Nijverheidsstraat 1A
NL-7261 AK Ruurlo (NL)
Tel. +31 573 45 88 00

Copyright © 2018 Bronkhorst. All rights reserved.     Sitemap     Disclaimer     Privacy note